Adding Integers Note Page

Subtracting Integers Note Page

The Rule: Change the subtraction sign to an addition sign, and ALSO change the very next number's sign to the opposite sign. THEN, following the adding integers rules.

Simply put: Change it to "Adding the Opposite" or "Stay, Flip, Flip"

Proof that changing the subtraction sign to "Adding the Opposite" works:
What is $4-3$? \qquad
Now compute 4-3 but change it to "Adding the Opposite": 4-3 will become \qquad
Now following the adding integers rules for $4+(-3)=1$

Examples: $-7-5$ will become $-7+(-5)=-12$
$4-9$ will become $4+(-9)=-5$
$-3-(-6)$ will become $-3+(+6)=3$
$8-(-4)$ will become $8+(-4)=4$

Practice problems:

1) $-4-6$ becomes \qquad . The final answer is \qquad
2) 6-9 becomes \qquad . The final answer is \qquad
3) $5-(-4)$ becomes \qquad . The final answer is \qquad
4) $-2-(-3)$ becomes \qquad . The final answer is \qquad .

More practice:
5) $-5-4=$ \qquad (Same signs add and keep the sign)
6) $3-8=$ \qquad (Different signs, subtract and keep the big number's sign)
7) $-1-(-5)=$ _ (Different signs, subtract and keep the big number's sign)
8) $6-(-2)=$ \qquad (Same signs add and keep the sign)
9) $-3-0=$ \qquad 10) $-8-2=$ \qquad 11) $-4-(-6)=$
12) $-1-1=$ \qquad
13) $-5-2=$ \qquad
14) $7-2=$ \qquad 15) $-2-6=$
16) $-5-5=$ \qquad
17) $-6-3=$ \qquad 18) $-4-(-6)=$ \qquad 19) $0-(-4)=$
20) $8-(-2)=$

