Multiplying Powers

To multiply powers with the same base, keep the base the same and add the exponents.

$$a^m \times a^n = a^{m+n}$$

1. Evaluate.

a)
$$3^4 \times 3^5$$

b)
$$7^{-2} \times 7^4$$

a)
$$3^4 \times 3^5$$
 b) $7^{-2} \times 7^4$ c) $2^3 \times 2^{-1}$

Dividing Powers

To divide powers with the same base, keep the base the same and subtract the exponents.

$$a^m \div a^n = a^{m-n}$$

2. Evaluate.

a)
$$4^6 \div 4^5$$

a)
$$4^6 \div 4^5$$
 b) $6^{-3} \div 6^{-5}$ c) $3^3 \div 3^{-1}$

c)
$$3^3 \div 3^{-1}$$

Power of a Power

To simplify a power of a power, keep the base the same and multiply the exponents

$$(a^m)^n = a^{m \times n}$$

3. Evaluate.

a)
$$(3^4)^3$$
 b) $(5^2)^2$ c) $(2^5)^4$

Zero Exponents

Any base raised to an exponent of zero equals **1**.

$$a^{0} = 1$$

4. Evaluate.

b)
$$2^2 \times 2^{-2}$$

a)
$$6^0$$
 b) $2^2 \times 2^{-2}$ c) $4^{-3} \div 4^{-3}$

Negative Exponents

Any base raised to a negative exponent is equal to the **reciprocal** of the base raised to a positive exponent.

$$a^{-m} = \frac{1}{a^m}$$

$$a^{-m} = \frac{1}{a^m} \qquad \qquad \frac{1}{a^{-m}} = a^m$$

5. Evaluate.

b)
$$2^3 \div 2^5$$
 c) 3^{-4}

Simplifying Expressions

Simplify.

a)
$$4^3 \times 4^4 \times 4^{-2}$$

a)
$$4^{3} \times 4^{4} \times 4^{-2}$$
 b) $(2^{3} \times 2^{2}) \div 2^{7}$

c)
$$(5^2 \times 5^4)^6$$

c)
$$(5^2 \times 5^4)^6$$
 d) $(2^6 \div 2^8)^3$

e)
$$(3^7 \div 3^3) \div 3^4$$
 f) -538^0